UNIVERSITAS				
ILAM INAONESIA		Semester Learning Plan		

1. COURSE IDENTITY Subject Mathematics for Economics and Business			
Faculty	Business and Economics	Study Program	Accounting
Code	31208321	Credits	3
Group	Compulsory Subjects	Intake	Compulsory
Semester	1	Availability	Odd Semesters
Methods	In Class	Media	Blended
Subject Category/ Block	Economics	Prerequisite	
Lecturer			

2. COURSE LEARNING OUTCOME						
	LO		CLO	Indicators	Assessment / Evaluation	Weight
$\begin{aligned} & \text { GLO } \\ & 1 \end{aligned}$	Solve economic problems with a mathematical approach	CLO 1	Able to explain the type of function and the application of linear functions in a set of economics problems. Sub CLO1 A- Able to explain functions types and difference Sub CLO1 B - Able to describe various types of functions Sub CLO1 C - using linear approach and linear function graphics in applied economics. Sub CLO1 D - able to interpret the result of the linear set calculation in the economics theory	After finishing the course, the students are expected to be able to: a. Determine the slope of linear functions and tangents of nonlinear functions with graphical analysis. b. Calculate the demand, supply, price of items, balance and the effect of taxes and subsidies on the market balance from linear and quadratic equations. c. Make an equation in the form of linear functions and determine the total cost, total income, break even point analysis and national income.	Regular assignment and Written Exam	40\%

	UNIVERSITAS ISLAM INDONESIA	ACCOUNTING	Semester Learning Plan		
			Ver/Rev	Page	2/9

				d. Determine and describe the graph of the objective function and constraint functions for the regions that are possible with existing constraints		
CPL1	Solve economic problems with a mathematical approach	CPMK 2	SubCP2A - able to calculate simple interest rate and compound interest rate SubCP2 B-able to calculate present value effective interest SubCP3 C - able to calculate annuity	Able to calculate interest rate, present value and annuity correctly		
KK 2	Able to use economic theory concepts to analyze and solve economic problems.		After completing the course, the students are able to apply differential functions to solve economic problems. Sub CLO3 A - able to solve differential equation Sub CLO3 B - able to solve a set of economic equations using differential approach. Sub CLO3 C Sub CLO3D - able to use mathematical software to solve differential applications.	Able to apply differential function to solve economic problems correctly		
KU8	Able to carry out the self-evaluation process of the work group under their responsibility and able to manage learning independently.	CP 3	Students can solve economic problems in mathematical approach	Student can solve economic problems in mathematical approach	Case study completion presentatio n	20\%

UNIVERSITAS ILAM INDONESIA	ACCOUNTING		Semester Learning Plan		

3. MAP OF LEARNING ACHIEVEMENT ANALYSIS

CPL 1

able to apply economic theory in its application

KK 2
use the concept of economic theory to analyze and solve economic problems

4. Learning Experience and References

Learning Experience \quad Students gain learning experience through assignments as follows:

- Summarize in detail the rules in mathematical economics
- Carry out online quizzes about differentials
- Draw graphics and changes using software.
- Understand the theory of micro, macro and applied economics

References

[1] Ian Jacques, 2018, Mathematics for Economics and Business, Ninth edition. Pearson Educational Limited
[2] Frensidy, Budi, 2008, Matematika Keuangan, Jakarta: Salemba Empat
[3] Budnick, 1993, Applied Mathematical for Business, Economic and Social Sciences, Mc Graw-Hill, Singapore.

Meeting	CLO/ Sub-CLO	Topic/Sub topic	Method/Learning Model	Implementatio n	References
1	Basic Competence	The Scope of Mathematics for Economics	TM : Lecturers discuss class regulations with students. The lecturer explains the basic	1,3	

	UNIVERSITAS ISLAM indonesia	ACCOUNTING	Semester Learning Plan		
			Ver/Rev	Page	4/9

UNIVERSITAS ISLAM INDONESIA	ACCOUNTING	Semester Learning Plan		
		Ver/Rev	Page	5/9

			Concept of Consumption, Savings, National income, and Disposable income PT: Students complete the assignments of the application of linear function in economy using Software. AM: The lecturer gives case studies about economic problems which should be discussed by the group and presented in front of the class in the following meeting.	
5	$\begin{aligned} & \text { CLO } 2 \\ & \text { SUB A } \end{aligned}$		TM : The lecturer discusses the quadratic functions, and non-linear function application in supply and demand function, and also in market balance. PT : The students are assigned to do the assignment which is submitted in google classroom by the specified time. AMD : The lecturer informs the video link through google classroom.	1,3
6	$\begin{aligned} & \text { CLO } 2 \\ & \text { SUB } 1 \text { B } \end{aligned}$		TM The lecturer explains the government policy (tax and subsidy) towards the market balance, total revenue, total cost, and BEP PT - Students are assigned to do non-linear function application tasks. AMD - Students are asked to learn the main materials of the following discussion which is graphics optimization from the module or given reference.	1,3
7	CLO 2 SubCP C SubCP D	Graphics Optimization	TM The lecturer explains the objective function equation, the constraint function equation and draws the graph of the constraint	1,3

UNIVERSITAS ISLAM INDONESIA	ACCOUNTING	Semester Learning Plan		
		Ver/Rev	Page	6/9

			function and determines the appropriate area with the constraint function PT Students are assigned to work on graphic optimization analysis exercises	
8	ELO12	Competence test	TM Students work on written tests about linear function, non-linear functions, and graphic optimization.	1,3
9	$\begin{aligned} & \text { CLO } 2 \\ & \text { SUB B, C } \end{aligned}$	Mathematics of finance	Review on exam result Lecturers explain scale factors associated with percentage changes and index number. In addition, the lecturer also explains adjusting value data for inflation. PT Student work out on percentage changes and adjust value data for inflation	2
10			TM The lecturer explains the basic analysis using arithmetic and geometric series in finance mathematics. PT Students are assigned to do the mathematics exercises which consist of economic mathematics including NPV, compound interest and growth rates. AMD Students seek examples of the application of financial mathematics in everyday life through online media. Students are asked to study the next subject matter, which is about a simple differential in the module or reference book that has been given	2
11	$\begin{aligned} & \text { CLO } 3 \\ & \text { SUB A } \end{aligned}$	Differentiation	TM The lecturer explains the definition of differential and marginal cost and marginal revenue with a differential approach ending with profit maximization. PT Students do simple differential exercises.	1

UNIVERSITAS ISLAM INDONESIA	ACCOUNTING	Semester Learning Plan		
		Ver/Rev	Page	7/9

			AMD Students are asked to study the next materials, which is about applying differentials in the analysis of elasticity and Keynesian multiplier.		
12	CLO 3 SUB B	TM -The lecturer explains demand elasticity, supply elasticity and production elasticity and Keynesian Multiplier - Students continue to work on exercises about elasticity and Keynesian multiplier and draw conclusions	PT• Students are assigned to work on the elasticity and Keynesian multiplier exercises and draw conclusions AMD - Students are asked to study the materials, which is about Unconstrained optimization		
13	CLO 3 SUB B	Unconstrained optimization	TM Lecturers explain First-order conditions for maximization and minimization. Second order conditions for maximization and minimization, and profit maximization about mathematical models of assignment models.		
$\mathbf{1 4}$	CLO 3 SUB C	PT			

UNIVERSITAS ISLAM INDONESIA	ACCOUNTING	Semester Learning Plan		
		Ver/Rev	Page	8/9

			AMD Students are given the task to complete profit maximization exercises with software. Students are assigned to study the next material about compound differentials		
$\mathbf{1 5}$	CLO 3 SUB C	Compound Differential	TM The lecturer explains partial differentiation and marginal product. The lecturer explains the application of partial differential. The lecturer explains the derivative to two partial differentials.		
$\mathbf{1 6}$			PT Students discuss compound differentials exercises. AMD Students are encouraged to learn the next material by creating resumes about unconstrained optimization: functions with two variables and total differential and total derivatives,		

6. Assessment and Evaluation System

Assessment System	The Benchma accordance w Total $>80,00$ $77,50-79,99$ $75,00-77,49$ $72,50-74,99$ $70,00-72,49$ $67,50-69,99$ $65,00-67,49$	for Asse the Rec Grade A A- A/B B+ B B- B/C	ment Referenc or's Decree No. Total $\begin{aligned} & 62,50-64,99 \\ & 60,00-62,49 \\ & 55,00-59,99 \\ & 50,00-54,99 \\ & 45,00-49,99 \\ & 40,00-44,99 \\ & <40 \end{aligned}$	this course employs assessment criteria and weights in PR/Rek/BPA/III/2014 Article 12:

UNIVERSITAS ISLAM NDONESIA	ACCOUNTING	Semester Learning Plan		
		Ver/Rev	Page	9/9

Evaluation System	Each student must obtain at least C value / predicate for each CLO. If it has not been fulfilled, the student is required to carry out an examination / remedial test for the related CLO.

Date:	Date:	Date:
Validated by the Head of Study Program	Checked by Subject Group Coordinator	Prepared by Instructor

